当前位置:首页 > 实用范文

陶瓷基复合材料的复合机理【多篇】

时间:2025-02-28 08:53:39
陶瓷基复合材料的复合机理【多篇】

[说明]陶瓷基复合材料的复合机理【多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。

复合材料力学课件 篇一

复合材料力学课件:

复合材料力学研究的内容:

同常规材料的力学理论相比,复合材料力学涉及的范围更广,研究的课题更多。

首先,常规材料存在的力学问题,如结构在外力作用下的强度、刚度,稳定性和振动等问题,在复合材料中依然存在,但由于复合材料有不均匀和各向异性的特点,以及由于组分材料几何(各组分材料的形状、分布、含量)和铺层几何(各单层的厚度、铺层方向、铺层顺序)等方面可变因素的增多,上述力学问题在复合材料力学中都必须重新研究,以确定那些适用于常规材料的力学理论、方法、方程、公式等是否仍适用于复合材料,如果不适用,应怎样修正。

其次,复合材料中还有许多常规材料中不存在的力学问题,如层间应力(层间正应力和剪应力耦合会引起复杂的断裂和脱层现象)、边界效应以及纤维脱胶、纤维断裂、基体开裂等问题。

最后,复合材料的材料设计和结构设计是同时进行的,因而在复合材料的材料设计(如材料选取和组合方式的确定)、加工工艺过程(如材料铺层、加温固化)和结构设计过程中都存在力学问题。

当前,复合材料力学的研究工作主要集中在纤维增强复合材料多向层板壳结构的改进和应用上。这种结构是由许多不同方向的单向层材料叠合粘结而成的,因此叫作多向层材料结构。单向层材料中沿纤维的方向称为纵向;而在单向层材料子面内垂直于纤维的方向称为横向。

纵向和横向统称为主轴方向。单向层材料是正交各向异性材料,对它的力学研究以及对它的性能参量的了解乃是对多向层材料以及多向层板层壳结构进行力学研究的基础。多向层材料中各单向层材料的纤维方向一般是不同的。如何排列这些单向层材料要根据结构设计的力学要求进行。

陶瓷基复合材料的复合机理 篇二

陶瓷基复合材料的复合机理、制备、生产、应用及发展前景

1、陶瓷基复合材料的复合机理

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

1.1陶瓷基复合材料增强体

用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种。

1.1.1纤维类增强体

纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。连续纤维中又分为单丝和束丝,碳(石墨)纤维、氧化铝纤维和碳化硅纤维(烧结法制)、碳化硅纤维是以500~12000根直径为5.6~14微米的细纤维组成束丝作为增强体使用。而硼纤维、碳化硅纤维是以直径为95~140微米的单丝作为增强体使用。连续纤维制造成本高、性能高,主要用于高性能复合材料。短纤维连续长度一般几十毫米,排列无方向性,一般采用生产成本低,生产效率高的喷射成型制造。其性能一般比长纤维低。增强体纤维主要包括无机纤维和有机纤维。

1.1.2颗粒类增强体

颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末。

1.1.3晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.1.4金属丝

用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.1.5片状物增强体

用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

1.2陶瓷基的界面及强韧化理论

陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性

等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面 作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影 响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。

1.2.1界面的粘结形式

(1)机械结合(2)化学结合陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的结合,但通常是脆性的。

若增强体与基体在高温时不发生反应,那么在冷却下来时,陶瓷的收缩大于增强体,由此产生的径向压应力与界面剪切应力有关: =   ,为摩擦系数,一般取0.1~0.6。

1.2.2界面的作用

陶瓷基复合材料的界面一方面应强到足以传递轴向载荷并具有高的横向强度;另一方面要弱到足以沿界面发生横向裂纹及裂纹偏转直到纤维的拔出。因此,陶瓷基复合材料界面要有一个最佳的界面强度。强的界面粘结往往导致脆性破坏,裂纹在复合材料的任一部位形成并迅速扩展至复合材料的横截面,导致平面断裂。这是由于纤维的弹性模量不是大大高于基体,因此在断裂过程中,强界面结合不产生额外的能量消耗。若界面结合较弱,当基体中的裂纹扩展至纤维时,将导致界面脱粘,发生裂纹偏转、裂纹搭桥、纤维断裂以至于最后纤维拔出。所有这些过程都要吸收能量,从而提高复合材料的断裂韧性。

2、复合材料的制备与生产

陶瓷基复合材料的制备工艺主要有以下几部分组成:粉体制备、增强体(纤维、晶须)制备和预处理,成型和烧结。

2.1粉体制备

粉体的性能直接影响到陶瓷的性能,为了获得性能优良的陶瓷基复合材料,制备出高纯、超细、组分均匀分布和无团聚的粉体是很关键的。

陶瓷粉体的制备主要可分为机械制粉和化学制粉两种。化学制粉可获得性能优良的高纯、超细、组分均匀的粉体,是一类很有前途的粉体制备方法。但是这类方法或需要较复杂的设备,或制备工艺要求严格,因而成本也较高。机械法制备多组分粉体工艺简单、产量大,但得到的粉体组分分布不均匀,特别是当某种组分很少的时候,而且这种方法长会给粉体引入杂质。除此外,还可用物理法,即用蒸发-凝聚法。该方法是将金属原料加热到高温,使之汽化, ……此处隐藏5903个字……土岩棉复合外墙板厚度为250mm,其中钢筋混凝土结构承重层厚度150mm、岩棉保温层厚度50mm、饰面层厚度50mm。与传统的砖混墙体或膨珠、浮石、陶粒混凝土外墙板相比,该种复合外墙板除了具有适应承重要求的力学性能外,还符合枟民用建筑节能设计标准枠对其保温、隔热性能的要求,具有强度高、保温隔热性能好、施工方便等特点,冬季保温效果相当于厚度为490mm的砖墙,热稳定性也优于厚度为370mm的砖墙。但面密度较大,安装效率较低,不利于推广应用。

2、薄壁混凝土岩棉复合外墙板

薄壁混凝土岩棉复合外墙板是由钢筋混凝土结构层(里层)、岩棉保温层(中层)和混凝土饰面层(外层)复合而成的非承重型复合外墙板,墙板厚度为150mm。它主要用作框架结构轻板建筑体系的非承重外墙。薄壁混凝土岩棉复合外墙板不但具有优良的保温、隔热性能,其冬季保温相当于370mm的砖墙,而且比传统材料的外墙板重量轻得多。但制作工艺较复杂,不利于推广应用。

3、混凝土聚苯乙烯复合外墙板

混凝土聚苯乙烯复合外墙板是由70mm厚钢筋混凝土承重层(里层)、60mm或80mm厚聚苯乙烯板保温层(中层)和70mm厚钢筋混凝土饰面层(外层)复合而成。这种复合外墙板可用作钢或钢筋混凝土框架结构、框架—抗震墙结构的围护外墙,也可应用于其他需要围护外墙的结构。它的平均传热系数仅为0.58W/(㎡·K),约相当于1m厚块的保温效果。但面密度较大,需要专用吊机安装,不利于推广应用当前的建筑工业化。

4、混凝土膨胀珍珠岩复合外墙板

混凝土膨胀珍珠岩复合外墙板是由钢筋混凝土结构承重层、膨胀珍珠岩保温层和饰面层复合而成。混凝土膨胀珍珠岩复合外墙板厚度为300mm,其中承重层厚度150mm,保温层厚度100mm,饰面层厚度50mm。该种复合外墙板除了具有适应承重要求的力学性能外,还能满足民用建筑节能设计标准对其的要求。混凝土膨胀珍珠岩复合外墙板的隔热、保温性能大大优于以往的轻混凝土外墙板,稍逊于混凝土岩棉复合外墙板,其冬季保温效果相当于厚度为490mm的砖墙。但面密度大,需要专用吊机安装,不利于当前建筑工业化的推广应用。

5、钢丝网水泥保温材料夹芯板

钢丝网架水泥夹芯板是在工厂内将低碳冷拔钢丝焊成三维空间网架,中间填充轻质保温芯材(主要用阻燃的聚苯乙烯泡沫板)而制成的半成品,在施工现场再在夹芯板的两侧喷抹水泥砂浆或直接在工厂内全部预制完成。该种夹芯板具有重量轻、强度高、防震、保温和隔热、隔声性能好、防火性能好、抗湿、抗冻融性好、运输方便、损耗极少、施工方便经济、提供建筑使用面积。能根据设计上的要求组装成各种形式的墙体,甚至可在板内预先设置管道、电气设备、门窗框等,然后在生产厂内或施工现场,再于板的钢丝上铺抹水泥砂浆,施工简便、快速,加快施工进度。但制作工艺复杂,质量参差不齐,不符合工业化推广应用。

6、SP预应力空心板

SP预应力空心板生产技术是采用美国SPANCRETE公司技术与设备生产的一种新型预应力混凝土构件。该板采取高强低松弛钢绞线为预应力主筋,用特殊挤压成型机,在长线台座上将特殊配合比的干硬性混凝土进行冲压和挤压一次成型,可生产各种规格的预应力混凝土板材。该产品具有表面平整光滑、尺寸灵活、跨度大、高荷载、耐火极限高、抗震性能好等优点及生产效率高、节省模板、无需蒸汽养护、可叠合生产等特点。但价格较高。

7、加气混凝土外墙板

加气混凝土外墙板是以水泥、石灰、硅砂等为主要原料再根据结构要求配置添加不同数量经防腐处理的钢筋网片的一种轻质多孔新型的绿色环保建筑材料外墙板。该墙板高孔隙率致使材料的密度大大降低。墙板内部微小的气孔形成了静空气层减小了材料的热导率。因为墙板的孔隙率大,具有可锯、可钉、可钻和可粘结等优良的可加工性能,便于施工。该墙板同时具有良好的耐火性能、较高的孔隙率使材料具有较好的吸声性能等优点,已具有五十多年的欧美发达国家推广应用经验,工艺技术成熟。

8、挤出成型水泥纤维墙板(简称ECP) 挤出成型水泥纤维墙板是以硅质材料(如天然石粉、粉煤灰、尾矿等)、水泥、纤维等主要原料,通过真空高压挤塑成型的中空型板材,然后通过高温高压蒸汽养护而成的新型建筑水泥墙板。通过挤出成型工艺制造出的新型水泥板材,相比一般板材强度更高、表面吸水率低、隔声效果更好。其优异的性能和丰富的表面,不仅可用作建筑外墙装饰,而且有助于提高外墙的耐久性及呈现出丰富多样的外墙效果。可直接用作建筑墙体,减少多道墙体的施工工序,使墙体的结构围护、装饰、保温、隔声实现一体化。

轻质隔墙板

一、砌块式隔墙。用各种轻质墙体砌块砌筑而成的非承重隔墙,这种隔墙材料多运用于毛坯房的内部计划缔造。其特征是稳固、隔声、保温,但一旦砌筑成墙体,不可拆开调整。

二、玻璃隔墙。这种玻璃隔墙是用木材、金属型材等做布局,在布局内镶装玻璃制作而成。玻璃隔墙具有通光性好、色彩艳丽、装修作用好等特征。

三、骨架隔墙板。这类隔墙首要是由龙骨作为受力骨架固定于建筑主体计划上。当时运用最多的轻钢龙骨石膏距离便是最典型的骨架隔墙。这种隔墙在缔造时先用木材、金属型材等设置龙骨,在隔墙龙骨两头用各种木质板、防火板、塑料板、纸面石膏等板材做罩面板,如对保温、隔音等有特别需要,还可在龙骨骨架中填充保温、隔声材料,结尾构成隔墙。

四、板材隔墙。板材隔墙在商场上新兴起的有轻质隔墙板,这种隔墙材料首要以其质轻、环保、高强度、隔热、抗震、隔音、耐潮等性能好占有了隔墙材料的首要商场。这种距离多是由各类墙板缔造而成,且以轻质墙板为主。缔造时不需象石膏板一样设置隔墙龙骨,而是由隔墙板自身承重,将预制的隔墙板材直接固定于建筑主体计划上的隔段墙。墙板架设好后,再在墙身中布设管线。通常分为复合墙板、单一材料板材、空心板材等类型。与传统石膏板距离比拟,具有稳固,耐潮、保温、隔音等利益。商场上常见的商品有增强水泥聚苯板(GRC板)、复合夹芯板、钢丝网水泥板、石膏空心板、泰柏板、水泥陶粒板等。

五、活动隔墙。活动隔墙通常是指推拉式活动隔墙、可拆装的活动隔墙等。这种隔墙在大面积的房间中运用较多。其利益是可以随意开关、调整,活络地运用室内空间,改动空间大小和功用。

六、加气混凝土块隔墙。质轻 :孔隙达70%~85%,体积密度一般为500~900kg/m3,为普通混凝土的1/5,粘土砖的1/4,空心砖的1/3,与木质差不多,能浮于水。可减轻建筑物自重,大幅度降低建筑物的综合造价

七、GRC轻质隔墙板。材料用特种水泥等多种无机材料及外加剂,配合成浆料,经向混合体中加入空气,引成无数单孔微孔,而成蜂窝状。原材料和产品均为无机物,绝不燃烧。实验证明,9cm厚墙体的防火能力可达3小时以上。可广泛用作防火墙。根据墙体厚度和表面处理方式不同,墙体可隔音40-50分贝。同时它也是一种良好的吸音材料。由于加入空气,大大提高了产品的隔音效果。

你也可以在搜索更多本站小编为你整理的其他陶瓷基复合材料的复合机理【多篇】范文。

《陶瓷基复合材料的复合机理【多篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式